Toward Single-particle Bioimaging Using X-ray Free-electron Lasers
نویسندگان
چکیده
In this paper we review the recent progress toward single-particle imaging of biological molecules at x-ray free-electron laser (XFEL) facilities. We describe the progression from biological imaging at synchrotrons to imaging at XFELs, discuss recent successes, and point out specific challenges associated with imaging at XFEL facilities.
منابع مشابه
Single-particle structure determination by X-ray free-electron lasers: Possibilities and challenges
Single-particle structure recovery without crystals or radiation damage is a revolutionary possibility offered by X-ray free-electron lasers, but it involves formidable experimental and data-analytical challenges. Many of these difficulties were encountered during the development of cryogenic electron microscopy of biological systems. Electron microscopy of biological entities has now reached a...
متن کاملImaging whole Escherichia coli bacteria by using single-particle x-ray diffraction.
We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 A. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in th...
متن کاملImaging live cell in micro-liquid enclosure by X-ray laser diffraction
Emerging X-ray free-electron lasers with femtosecond pulse duration enable single-shot snapshot imaging almost free from sample damage by outrunning major radiation damage processes. In bioimaging, it is essential to keep the sample close to its natural state. Conventional high-resolution imaging, however, suffers from severe radiation damage that hinders live cell imaging. Here we present a me...
متن کاملStart-to-end simulation of single-particle imaging using ultra-short pulses at the European X-ray Free-Electron Laser
Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data...
متن کاملA comprehensive simulation framework for imaging single particles and biomolecules at the European X-ray Free-Electron Laser
The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single pa...
متن کامل